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ABSTRACT

Treatment of per-O-acetylated or acetalated glycosylnitromethanes derived from
the common hexoses and pentoses with tributyltin hydride and a catalytic amount of a
radical inmitiator [1,1°-azobis(cyclohexanecarbonitrile)] in refluxing benzene easily
afforded the corresponding glycosylmethanal oximes in 84-97% yields. Per-O-acetylated
C-B-glycopyranosylmethanal oximes were employed for synthesis of versatile C-f3-
glycopyranosyl cyanides of the B-D-gluco, (3-D-manno, B-D-galacto, B-D-xylo, and B-L-
rhamno configurations.

INTRODUCTION
The utility of the aliphatic nitro group is firmly established, both for the manifold
transformations of the functional group and for the creation of new carbon-carbon bonds

under extremely mild conditions. However, application of nitro derivatives could be
further extended if efficient and selective methods for replacing the nitro group by a
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hydrogen atom or for converting it into other functional groups become available. In
1981, Ono' discovered that the nitro group in tertiary nitro compounds is replaced by a
hydrogen atom on treatment with tributyltin hydride (TBTH) in the presence of the radical
initiator azoisobutyronitrile (AIBN). Under more drastic conditions and using a large
excess of TBTH, this reaction can also be used for denitration of secondary nitro
compounds.”” However, initially, primary nitro groups were considered to be inert to this
procedure.” Later, Witczak and Li* reported denitration of compounds with primary nitro
groups effected by reaction with TBTH in the presence of the radical initiator
1,1’-azobis(cyclohexanecarbonitrile) (ABCN). Therefore, as questions remained about
the scope of the reaction we decided to focus our attention on the behavior of primary
nitro groups of C-glycopyranosylnitromethanes under denitration conditions.’ Here, we
introduce a one-step conversion of easily available C-glycosylnitromethanes derived from
common hexoses and pentoses to the corresponding oximes under denitration conditions.

RESULTS AND DISCUSSION

In our attempts to effect denitration of per-O-acetylated C-f-
glycopyranosylnitromethanes6 (2,6-anhydro-1-deoxy-1-nitroalditols) 1-4 in refluxing
benzene with TBTH in the presence of ABCN, we found that the nitro group was not
replaced by a hydrogen atom but underwent a reduction to give C-B-
glycopyranosylmethanal oximes 9-12 in 85-97% yields (Scheme 1). The reduction
products 9-12 (C-B-D-glucopyranosyl-, 9; C-B-D-mannopyranosyl-, 10; C-B-D-
galactopyranosyl-, 11; C-B-D-xylopyranosyl-, 12; methanal oximes) were readily
separated from tin compounds in good yields by passing the reaction mixture through
silica gel using ethyl acetate and hexane. The same reduction products were formed using
AIBN instead of ABCN under otherwise identical reaction conditions. The
transformation also  occurred with  per-O-acetylated  2-amino-2-deoxy-B-D-
glucopyranosylnitromethane (5),% B-L-rthamnopyranosylnitromethane (6),” o-D-ribofura-
nosylnitromethane (7),® and 2,3:4,6-di-O-isopropylidene-B-D-mannopyranosylnitrometh-
ane (8).” In the all cases, the desired respective products 13-16 were obtained in high
yields.

At the reflux temperature of benzene, the reaction provided only one isomer of the
desired products 9-16, which were detected by TLC. After cooling and standing at rt, the
compounds in solution easily isomerised to the mixture of E/Z oximes 9-16 and gradually
decomposed to the corresponding aldehydes. To avoid the latter problem, the oxime
group of compounds 9-16 was acetylated with a mixture of acetic anhydride and pyridine
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OH OAc
TBTH, ABCN s Ac,0 s
R—CH—NO, ————— R—CH=N —2-.  R—CH=N
CeHs C.H N
R4
5
, LRy oX Me 0 CH=N
R N AcO Y
AcO CH=N s OX
H R2 OAc
913 X=H 14 X=H
17-21 X=Ac 22 X=Ac
OAc oX Me
’ X
O _.CH=N Me

AcC:) aAc

15 X=H

23 X=Ac 16 X=H

24 X =Ac
Scheme 1
Compd. |R! R* R R' R Yield®(%)  EIZ

9 H OAc OAc H CH,-OAc 90 8:1
10 OAc H OAc H CH,-OAc 85 1:1
11 H OAc H OAc CH,-OAc 92 9:1
12 H OAc OAc H H 97 5:3
13 H NHAc OAc H CH,-OAc 88 3:1
14 b) b) b) b) b) 84 32
15 | » b 84 2:1
16 b) b) b) b) b) 90 3:2

a) Yield of isolated E/Z isomers; b) See Scheme 1.
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OH NO OHo
HO Y 2 1. NaOH, HZO HO
HO HO CHO
2.0

OH © 73 OH
OAc
1. NH,OH 0 OAc
2 AcO s
AcO . CH=N

2.Ac,O, C.H.N
2 5 OAc

Scheme 2

at rt. Acetylation products 17-24 were obtained in very good yields. The crystalline
oximes 9-14 and 16 could be stored at rt for several weeks without decomposition. To
confirm the structure of the oximes obtained, compound 17 was also prepared from the
previously described C-B-D-glucopyranosylmeth'gmallo (2,6-anhydro-D-glycero-D-gulo-
heptose) by its reaction with hydroxylamine according to the Vasella methodology""
followed by the aforementioned base-catalyzed acetylation (Scheme 2).

The structural assignment of prepared compounds was mainly established by 'H
and *C NMR (including DEPT, COSY and HETCOR) spectral analyses. Especially
diagnostic is the appearance of a signal CH=N-OH at 6 ~ 146-148 in the *C NMR
spectrum (Table 2) of compounds 9-16.""'? The "*C chemical shifts for CH=N-OAc in
compounds 17-24 (Table 4) appear 19 ppm downfield to those for CH=N-OH in the
corresponding compounds 9-16. The 'H NMR spectra of all compounds 9-14 and 16-22
showed H-H coupling constants corresponding to the *C; conformations of the mono-
saccharide units of 9-13, 16-21 and to the lC4 conformations of 14 and 22, and confirming
their p-configuration."”

Structures of E and Z isomers were also confirmed on the basis of 'H NMR

spectra.' " The proton chemical-shift values of the CH=N signal of E-isomers of 9-16

were observed at & =~ 7.2-7.4, while those of the corresponding Z isomers appeared at
higher field (8 ~ 6.5-6.7). As shown in Scheme 1, the ratio of E/Z isomers of C-B-
glycopyranosylmethanal oximes derived from hexoses is dependent on configuration of
their substituent at position 3. When the oxime derivatives possessed a 2,3-threo-
configuration. a 3:1 to 9:1 ratio of E/Z isomers was observed. However, when derivatives.
10, 14, 16 with an axial substituent at position C-3 were examined, smaller E/Z ratios
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Figure 1

were obtained (3:2 to 1:1). This observation can be explained by a hydrogen bond
between the oxime hydroxyl group and the axial oxygen atom at position C-3. As
illustrated in Figure 1, the formation of the hydrogen bond stabilizes the less favored Z
isomers; consequently the pertinent E/Z ratios were decreased. Occurrence of the
hydrogen bond was also recognized by means of IR spectroscopy, and supported by the
fact that only E isomers were obtained for derivatives 17-24 with an acetylated oxime
moiety.

Under conditions whereby TBTH selectively reduces a primary nitro group to an
oxime, other common functionalities such as ester, amide, acetal, amino, cyano, formyl,
sulfinyl, and olefinic groups have been shown not to be affected.>'* This selectivity could
enhance the utility of the present reaction in organic synthesis. The high selectivity of the
reaction suggests that it may be a free-radical chain reaction.™'*® This suggestion is
further confirmed by facts that (1) the reaction proceeds slowly in the absence of a radical
initiator ABCN and (2) mixtures of primary nitro compounds and TBTH are almost
completely unreactive at low temperatures (20-30 °C) in the presence or absence of
ABCN. No occurrence of the initiation step at low temperatures suggests the possibility
that tin hydride by itself cannot act as an electron-transfer reagent.” However, it is also
conceivable that the uninitiated reaction can be initiated thermally by homolysis of the
small amounts of hexabutyldistannane that appear to be always present in the starting
TBTH." The reduction reaction of glycosylnitromethanes by TBTH can be proposed to
proceed via the following addition-elimination mechanism (Scheme 3),

The first step is the formation of the alkyl(trialkyltinoxy)nitroxyl radical, which is
generated by an addition of the tributyltin radical to the nitro compound.l6'l7 The
subsequent step is a cleavage of the alkyl(trialkyltinoxy)nitroxyl radical affording the
trialkyltinoxyl radical and a nitroso compound., which easily isomerizes into the
corresponding oxime. The selectivity of the reaction is derived from the strong electron-
accepting power of the nitro group and the formation of the alkyl(trialkyltinoxy)nitroxyl
radical shown in Scheme 3. ‘
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In, — 2In"  In=ABCN

Bu,SnH + In" — Bu,Sn' + InH

Bu3Sn—AOH Bu,SnH
Bu,Sn’ Bu,Sn-0O°
R-CH,—NO, R-CHZ—N-O' R-CH,-N=0
Bu,SnO

R-CH,-N=0 ——* R-CH=N~OH

Scheme 3

The reason for inactivity of primary nitro compounds in the denitration reaction is
not yet clear. but a possible reason is that their carbon-nitrogen bond is harder to break
than that of tertiary and activated secondary nitro compounds (a-nitroketones,
o-nitroesters or a-nitroalkenes).”® The fact that inactivated secondary nitro groups are
denitrated under more drastic conditions using a large excess of TBTH, also confirms the
previous hypothesis.

The use of aforementioned per-O-acetylated C-B-glycopyranosylmethanal oximes
for synthesis of versatile C-B-glycopyranosyl cyanides was also carried out. As shown in
Scheme 4, treatment of per-O-acetylated C-gly\copyranosylmethanal oximes 17-22 with
sodium acetate in acetic acid at 90 °C for 2-4 h easily afforded high yields of the
corresponding C-glycopyranosyl cyanides 25-30. The most widely used methods for the
preparation of C-glycopyranosyl cyanides give the 12-trans (o-D) isomers.'® The
transformation reported here provides C-glycopyranosyl cyanides with the 1,2-cis (B-D)
configuration and is an alternative to their preparation from C-glycosylnitromethanes by
treatment with PCl;.19

In summary, the treatment of per-O-acetylated C-glycopyranosyl- and
-furanosylnitromethanes with TBTH in the presence of a radical initiator provides a
general and convenient one-step synthesis of C-glycopyranosyl- and -furanosylmethanal
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R4 R4
R® R? RS R
OAc
R3 -0 s AcONa R3 -0
CH=N CN
AcO ) AcOH AcO )
H R H R
Scheme 4
Compd. | R' R? R’? R R Yield (%)
25 H OAc OAc H CH,OAc 90
26 OAc H OAc H CHzoAc 88
27 H OAc H OAc  CH,OAc 93
28 H OAc OAc H H 89
29 H NHAc OAc H CH,0Ac¢ 95
30| OAc H OAc H  CH, 92

a) The resulting formula depicts the p enantiomer of 30.

oximes. Owing to unreactivity of a series of common functionalities under the reaction
conditions employed,:"H the method seems to be applicable to compounds containing
other functional groups. Since C-f-glycosylmethanal oximes are convenient synthons for

a number of subsequent reactions including cycloadditions, hydrolysis to aldehydes, and

other reactions with various donors to give more complex carbohydrate mimics, their easy
availability offers interesting prospects for synthesis of C-disaccharides and other C-B-

glycosyl compounds.

EXPERIMENTAL

General methods and materials. Melting points were measured on a Kofler
stage. Optical rotations were measured with a Perkin-Elmer 141 polarimeter at 20 °C.

Microanalyses were obtained using a Perkin-Elmer 240 instrument. NMR spectra were
recorded at 295 °K on a Bruker AM 300 spectrometer (300.13 MHz for 'H and .75.47

MHz for *C). TLC was run on glass plates precoated with silica gel L (0.005-0.040 mm,
Lachema, Brno, Czech Republic); detection was effected by spraying the chromatograms
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with 10% ethanolic sulfuric acid and charring them on a hot plate. Flash chromatography
was performing using silica gel (0.040-0.100 mm, Lachema).

Commercial TBTH, AIBN and ABCN (Aldrich) were used. B-pD-glycosyl-
nitromethanes 1-8 were obtained according to published procedures.>™

General procedure for preparation of C-glycosylmethanal oximes. A mixture
of per-O-acetylated C-glycosylnitromethane (1.28 mmol), TBTH (1.2 mL, 4.50 mmol),
and ABCN (30 mg) in benzene (5 mL) was stirred at 80 °C for 2 h. After addition of
another portion of ABCN (20 mg), reflux was continued for 1-4 h until no starting
material could be detected (TLC, 3:2 petroleum ether-ethyl acetate). The reaction mixture
was then cooled to room temperature and the solvent removed under reduced pressure.
Flash column chromatography of the residue (silica gel) afforded C-glycosylmethanal
oximes.

3,4,5,7-Tetra-0O-acetyl-2,6-anhydro-D-glycero-p-gulo-heptose oxime (2,3,4,6-
tetra-0-acctyl-p-b-glucopyranosylmethanal oxime, 9). Yield 432 mg (90%), mp 155-
157 °C (from hexane-ethyl acetate), [a]p +22.0° (¢ 1.0, acetone); ratio of E/Z isomers 8:1.
IR spectrum (KBr) v (cm™): 3428 (OH).

Anal. Caled for CsH;NOyq: C, 48.00; H, 5.64; N, 3.73. Found: C, 48.25; H, 5.50;
N, 3.71.

3,4,5,7-Tetra-0-acetyl-2,6-anhydro-b-glycero-n-galacto-heptose oxime (2,3,4,6-
tetra-0-acetyl-B-D-mannopyranosylmethanal oxime, 10). Yield 408 mg (85%), mp
152-154 °C (from hexane-ethyl acetate), [a]p +35.0° (¢ 1.0, acetone); ratio of E/Z isomers
1:1. IR spectrum (KBr) v (cm™"): 3423 (OH).

' Anal. Calcd for CsH»NOyq: C, 48.00; H, 5.64; N, 3.73. Found: C, 48.20; H, 5.49;

N, 3.73.

3,4,5,7-Tetra-0-acetyl-2,6-anhydro-p-glycero-L-manno-heptose oxime (2,3,4,6-
tetra-0O-acetyl-B-D-galactopyranosylmethanal oxime, 11). Yield 441 mg (92%), mp
170-172 °C (from hexane-ethyl acetate), {a]p +39.0° (c 1.0, acetone); ratio of E/Z isomers
9:1. IR spectrum (KBr) v (cm™): 3332 (OH).

Anal. Caled for CsH,NO,q: C, 48.00; H, 5.64; N, 3.73. Found: C, 48.12; H, 5.58;
N.3.67. '

3,4,5-Tri-O-acetyl-2,6-anhydro-p-gulose oxime (2,3,4-tri-O-acetyl-3-D-xylo-
pyranosylmethanal oxime, 12). Yield 376 mg (97%), mp 160-163 °C (from hexane-
ethyl acetate), [a]p +23.1° (c 0.5, acetone); ratio of E/Z isomers 5:3. IR spectrum (KBr) v
(em™): 3365, 3271 (OH).

Anal. Caled for C)p,H7NOg: C, 47.53; H, 5.65; N, 4.62. Found: C, 47.64; H, 5.69;
N, 4.57.

3,4,5-Tri-0O-acetyl-2,6-anhydro-7-deoxy-L-glycero-L-galacto-heptose oxime
(2,3,4-tri-O-acetyl-B-L-rhamnopyranosylmethanal oxime, 14). Yield 340 mg (84%) as
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a syrup, [o]p =27.5° (¢ 1.0, acetone); ratio of E/Z isomers 3:2. IR spectrum (KBr)
v (cm™): 3341 (OH).

Anal. Caled for Cj3H gNOg: C, 49.21; H, 6.04; N, 4.41. Found: C, 49.33; H, 6.00;
N, 4.32.

3,4,6-Tri-O-acetyl-2,5-anhydro-p-altrose oxime (2,3,5-tri-O-acetyl-ct-D-ribo-
furanosylmethanal oxime, 15). Yield 325 mg (84%) as a syrup, [a]p —4.5° (¢ 1.0,
acetone); rapio of E/Z isomers 2:1.

Anal. Calcd for Cy,H;NO;g: C, 47.53; H, 5.65; N, 4.62. Found: C, 47.70; H, 5.79;
N, 4.45.

2,6-Anhydro-3,4:5,7-di-O-isopropylidene-p-glycero-np-galacto-heptose  oxime
(2,3:4,6-di-O-isopropylidene-f3-p-mannopyranosylmethanal oxime, 16). Yield 331 mg
(90%), (ratio of EIZ isomers 3:2). Fractional crystallization provided Z isomer,
mp 157-160 °C (from heptane-ethyl acetate); [a]p +58.0° (¢ 1.0, acetone). IR spectrum
(KBr) v (em™): 3251 (OH).

Anal. Caled for C3H;NOg: C, 54.35; H, 7.37; N, 4.88. Found: C, 54.23; H, 7.51;
N, 4.75.

3-Acetamido-4,5,7-tri-O-acetyl-2,6-anhydro-3-deoxy-p-glycero-p-gulo-heptose
oxime (2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-f}-D-glucopyranosylmethanal oxime,
13). A mixture of per-O-acetyl-2-acetamido-2-deoxy-B-D-glucopyranosylnitromethane
(195 mg, 0.5 mmol), TBTH (0.4 mL, 1.5 mmol), and ABCN (20 mg) in benzene (5 mL)
was refluxed for 8 h. The reaction mixture was cooled to room temperature, and the
solvent was removed under reduced pressure. Flash chromatography of the residue on
silica gel (1:4 petroleum ether-ethyl acetate) afforded oxime 13 (yield 165 mg, 88%).
Crystallization of 13 from a mixture of heptane-ethyl acetate (1:1) gave needles. Mp 201-
204 °C (from heptane-ethyl acetate), [a]p +29.0° (¢ 1.0, acetone); ratio of E/Z isomers
4:1. IR spectrum (KBr) v (cm™): 3328 (OH).

Anal. Caled for CyosHipN,00: C, 48.13; H, 5.92; N, 7.48. Found: C, 48.18; H,
3.96:N.7.29,

General procedure for acetylation of C-glycosylmethanal oximes. Acetic
anhydride (0.3 mL) and pyridine (0.4 mL) were added to a solution of C-glycosylmethanal
oximes 9-16 (0.4 mmol) in CHCl; (10 mL) at 0 °C. After 1 day standing at rt, cold
aqueous M HCI (10 mL) was added. The organic phase was washed with a second portion
of cold aqueous M HCI (10 mL) and then twice with saturated aqueous NaHCO; (10 mL)
and water (10 mL) and then dried (Na,SO,). Removal of the solvent gave a syrup, which
was crystallized by triturating it with a mixture of hexane and ethyl acetate. Collection by
filtration and recrystallization from heptane-ethyl acetate afforded the per-O-acetylated C-
glycosylmethanal oximes 17-24 in 88-95% yields. ‘
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(E)-3,4,5,7-Tetra-0-acetyl-2,6-anhydro-p-glycero-p-gulo-heptose oxime acetate
(N-acetoxy-2,3,4,6-tetra-0-acetyl-p-p-glucopyranosylmethanimine, 17). Yield 154 mg
(92%), mp 151-153 °C; [a]p +26.0° (¢ 1.0, acetone).

Anal. Caled for C17H3NOy,: C, 48.92; H, 5.55; N, 3.36. Found: C, 48.78; H, 5.51;
N, 3.34.

(E)-3,4,5,7-Tetra-0O-acetyl-2,6-anhydro-b-glycero-pD-galacto-heptose oxime
acetate  (/V-acetoxy-2,3,4,6-tetra-O-acetyl-B-p-mannopyranosylmethanimine, 18).
Yield 149 mg (89%) as a syrup, [ot]p +3.0° (¢ 1.0, acetone).

Anal. Caled for C;H3NOy: C, 48.92; H, 5.55; N, 3.36. Found: C, 48.99; H, 5.42;
N, 3.24.

(E)-3,4,5,7-Tetra-0-acetyl-2,6-anhydro-bp-glycero-L-manno-heptose oxime
acetate  (/N-acetoxy-2,3,4,6-tetra-O-acetyl-B-nD-galactopyranosylmethanimine, 19).
yield 159 mg (95%), mp 139-140 °C; [a]p +45.0° (¢ 1.0, acetone).

Anal. Calcd for C;sHy3NOy: C, 48.92; H, 5.55; N, 3.36. Found: C, 48.83; H, 5.61;
N, 3.19.

(E)-3,4,5,7-Tctré-0-acetyl-2,6-anhydro-D-gulose oxime acetate (N-acetoxy-
2,3,4-tri-O-acetyl-B-D-xylopyranosylmethanimine, 20): yield 134 mg (97%), mp 139-
141 °C; [a]p +4.5° (c 1.0, acetone).

Anal. Caled for C14H;oNOq: C, 48.70; H, 5.55; N, 4.06. Found: C, 48.69; H, 5.50;
N. 3.95.

(E)-3-Acetamido-4,5,7-tri-O-acetyl-2,6-anhydro-3-deoxy-p-glycero-p-gulo-hept-
ose oxime acetate (2-acetamido-N-acetoxy-3,4,6-tri-O-acetyl-2-deoxy-f3-D-glucopyr-
anosylmethanimine, 21). Yield 156 mg (94%), mp 177-179 °C; [a]p +13.5° (¢ 1.0,
acetone).

Anal. Calcd for C7H,sN,Oy0: C, 49.04; H, 5.81; N, 6.73. Found: C, 49.18; H,
5.96: N. 6.59.

(E)-3,4,5-Tri-0-acetyl-2,6-anhydro-7-deoxy-L-glycero-L-galacto-heptose oxime
acetate (N-acetoxy-2,3,4-tri-O-acetyl-B-L-rhamnopyranosylmethanimine, 22). Yield
135 mg (94%), mp 130-132 °C; [at]p +3.4° (¢ 1.0, acetone).

Anal. Caled for C;5HyNOg: C, 50.14; H, 5.89; N, 3.90. Found: C, 50.23; H, 6.00;
N, 3.78.

(E)-3,4,6-Tri-0-acetyl-2,5-anhydro-D-altrose oxime acetate (/N-acetoxy-2,3,5-
tri-O-acetyl-o-D-ribofuranosylmethanimine, 23). Yield 134 mg (97%) as a syrup. [a]p
+41.0° (¢ 1.0, acetone). .

Anal. Calcd for C4HgNOq: C, 48.70; H, 5.55; N, 4.06. Found: C, 48.85; H, 5.67;
N, 3.90.

(E)-2,6-anhydro-3,4:5,7-di-O-isopropylidene-D-glycero-p-galacto-heptose oxime
acetate (/V-acetoxy-2,3:4,6-di-O-isopropylidene--D-mannopyranosyl-methanimine,



07:31 23 January 2011

Downl oaded At:

108 PHAM-HUU ET AL.

24). Yield 121 mg (92%), mp 156-158 °C. [a]p —30.5° (c 1.0, acetone).

Anal. Calcd for Cy5H3NO;: C, 54.70; H, 7.04; N, 4.25. Found: C, 54.59; H, 7.21;
N, 4.17.

Preparation of oxime 17 from p-b-glucopyranosylmethanal. To a stirred
solution of  C-B-D-glucopyranosylmethanal, freshly  prepared from pB-D-
glucopyranosylnitromethane (669 mg, 3 mmol) by ozonolysis,lo in water (2 mL) was
added hydroxylammonium hydrochloride (417 mg, 6 mmol) and a 0.5 M NaOMe/MeOH
(8 mL). Stirring was continued for 5 h at 60 °C, then the reaction mixture was
concentrated. The residue was dissolved in anhydrous pyridine (5 mL) and added
dropwise to a mixture of pyridine (20 mL) and acetic anhydride (10 mL) at 0 °C. The
reaction mixture was stirred overnight at rt, poured into 0.5 M HCI (50 mL), and the
mixture was then extracted with chloroform (20 mL): The organic phase was washed
with 0.5 M HCI (10 mL), saturated aqueous NaHCO; (2 x 10 mL) and water (30 mL),
then dried (N2,50,4). Removal of the solvent gave a syrup, which was subjected to
column chromatography (1:1 petroleum ether-ethyl acetate) affording 17 in an overall
20% yield (250 mg).

General procedure for preparation of C-glycopyranosyl cyanides. A mixture
of a per-O-acetylated C-glycopyranosylmethanal oxime acetate (0.2 mmol) and sodium
acetate (0.2 mmol) in acetic acid (4 mL) was heated at 100 °C for 2-5 h. After cooling to
ambient temperature, a mixture of water (10 mL) and chloroform (20 mL) was added. The
organic phase was separated, and the aqueous phase was extracted with chloroform (10
mL). The combined organic phase was washed with saturated aqueous NaHCO; (10 mL)
and water (2 x 20 mL), and then dried (Na,SOy,). Solvent was evaporated to give a syrup
of a C-glycopyranosy! cyanide, which was crystallized from a mixture of diethyl ether and
hexane. 'H and “C NMR spectra of the cyanides 25-27 were in agreement with the
published data."?°

3,4.5,7-Tetra-0O-acetyl-2,6-anhydro-p-glycero-p-gulo-heptononitrile  (2.3.4.6-
tetra-O-acetyl-B-n-glucopyranosyl cyanide, 25). Yield 64 mg (90%). mp 114-115 °C:

Lit."® 113-114 °C; Lit.”® 114-115 °C; Lit.*' 116 °C.
3.4.5,7-Tetra-0-acetyl-2,6-anhydro-p-glycero-p-galacto-heptononitrile (2.3.4.6-
tetra-0O-acetyl-B-D-mannopyranosyl cyanide, 26). Yield 63 mg (88%). mp 139-141 °C:
Lit.'? 141-142 °C; Lit.”° 142-144 °C.
3,4,5,7-Tetra-0-acetyl-2,6-anhydro-b-glycero-L-manno-heptononitrile (2,3,4,6-
tetra-O-acetyl-B-p-galactopyranosyl cyanide, 27). Yield 66 mg (93%). mp 170-171 °C:
1. 167-168 °C. Lit.* 169-170 °C.
3,4,5-Tri-O-acetyl-2,6-anhydro-p-gulo-hexononitrile  (2,3,4-tri-O-acetyl-B-D-
xylopyranosyl cyanide, 28). Yield 51 mg (89%). mp 130-132 °C; Lit."” 132-133 ° N
Lit? 133 °C.
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3-Acetamido-4,5,7-tri-O-acetyl-2,6-anhydro-3-deoxy-p-glycero-p-gulo-heptono-
nitrile (2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-p-D-glucopyranosyl cyanide, 29). Yield
68 mg (95%). mp 184-186 °C. '*’H NMR (acetone-dg): § 7.44 (d, 1H. J3ny 8.8 Hz. NH):
5.31 (dd, 1H. J;4 10.2 Hz. J; 5 9.5 Hz. H-4); 5.04 (dd, 1H. J5¢ 10.1 Hz. H-5); 4.92 (d, 1H,
J»>3 10.8 Hz. H-2); 4.29 (m. 1H, H-3); 4.23 (dd. 1H, Jy 7, 5.1 Hz. J3,9, 12.6 Hz. H-7a):
4.11 (dd, 1H. Jg 35 2.2 Hz, H-7b); 3.95 (ddd, 1H, H-6); 2.02, 1.99, 1.97, 1.89 (4s, 12H. 4
Me of Ac).. Bc NMR (acetone-dg): & 170.7 (3x), 169.9 (4 CO of Ac); 116.6 (CN); 77.2
(C-6); 73.1 (C-4); 69.0 (C-5); 67.5 (C-2); 62.6 (C-7); 52.9 (C-3); 22.8, 20.6 (3%).

Anal. Calcd for C,sH,oN,O5: C, 50.56; H, 5.66; N, 7.86. Found: C, 50.71: H, 5.76;
N, 7.69.

3,4,5-Tri-O-acetyl-2,6-anhydro-7-deoxy-L-glycero-L-galacfo-heptononitrile (2,3.4-
tri-O-acetyl-f-L-rhamnopyranosyl cyanide, 30). Yield 55 mg (92%), mp 129-130°C. 'H
NMR (acetone-dg): & 5.64 (dd, 1H, J53 1.3 Hz, J54 3.5 Hz, H-3); 5.16 (dd, 1H, J;s 10.1
Hz, H-4); 5.13 (d, 1H, H-2); 4.99 (t, 1H, Js, 9.8 Hz, H-5); 3.71 (m, 1H, H-6); 2.20, 2.02,
1.94 (3s, 9H, 3 Me of Ac); 1.20 (d, 3H, Js7 6.2 Hz, 3H-7). 3c NMR (acetone-dg): &
170.2, 170.1, 169.9 (3. CO of Ac); 115.6 (CN); 75.6 (C-6); 71.1 (C-4); 70.5 (C-3); 69.1
(C-5); 67.1 (C-2); 20.6, 20.4, 20.3 (3 Me of Ac); 17.8 (C-7). '

Anal. Caled for C3H;3NO;: C, 52.17; H, 5.73; N, 4.68. Found: C, 52.31; H, 5.86;
N, 4.65.
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